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SUMMARY 

The Dorodnitsyn boundary later formulation is given a finite element interpretation and found to 
generate very accurate and economical solutions when combined with an implicit, non-iterative 
marching scheme in the downstream direction. The algorithm is of order (A%, Ax) whether linear or 
quadratic elements are used across the boundary layer. Solutions are compared with a Dorodnitsyn 
spectral formulation and a conventional finite difference formulation for three Falkner-Skan pressure 
gradient cases and the flow over a circular cylinder. With quadratic elements the Dorodnitsyn finite 
element formulation is approximately five times more efficient than the conventional finite difference 
formulation. 
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1. INTRODUCTION 

In the past boundary layer flows have been computed effectively with both finite difference 
formulations'** and finite element  formulation^.^-^ Generally a solution is sought in terms of 
the velocity components, u and o, as functions of x and y, in two dimensions. 

The Dorodnitsyn6 boundary layer formulation (method of integral relations) is known to 
obtain relatively accurate solutions with only a few (3 or 4) coefficients defining the velocity 
profile across the boundary layer. In part the high accuracy comes from treating u as an 
independent, rather than a dependent, variable. Here we propose to combine the Dorodnit- 
syn formulation with finite element procedures to see if a computationally more efficient 
algorithm can be developed for general boundary layer flows. 

The method of integral relations7 can be interpreted as a method of weighted residuals' in 
which a partial differential equation is reduced to a system of ordinary differential equations. 

Suppose a system of a partial differential equations is written 

where P,  and F, are known functions of the dependent variables, y. The method of integral 
relations replaces equation (1) with 
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Equation (2) is a system of ordinary differential equations in the x,th (if j) co-ordinate 
direction and fk is a family of weight functions. 

If fk were chosen as Dirac delta functions centred at the nodal points in the xith ( i f j )  
co-ordinate directions the same system of ordinary differential equations would result as by 
replacing appropriate derivatives in equation (1) with finite difference formulae. However 
the utility of the method of integral relations (MIR) is demonstrated better by choosing 
smooth functions for fk. Then solutions of high accuracy can be obtained with relatively few 
unknown in the &th (if j )  directions. 

The method of integral relations (MIR) is particularly effective for parabolic problems that 
can be reduced to ordinary differential equations in the time or time-like direction. 
Dorodnitsyn6 developed a particular method of integral relations for the boundary layer 
equations and that will be the starting point for this paper. 

If the weight function, fk, in equation (2) is chosen to coincide with the analytic functions 
used to represent y a Galerkin method8 is obtained. For certain classes of problems the 
Galerkin method is optimal. 

It has been foundg,'' that by modifying the Dorodnitsyn method of integral relations to 
make use of orthonormal weight and approximating functions a Galerkin formulation is 
produced. This will be referred to as the Dorodnitsyn spectral formulation in this paper. 

The Galerkin finite element method has proved to be a particularly efficient interpretation 
of the Galerkin formulation. In common with the method of integral relations or the method 
of weighted residuals, the finite element method obtains more accurate solutions by combin- 
ing a smooth weight (or test) function with the integral (weak) formulation, equation (2). By 
using local test functions the finite element method can be combined more efficiently with 
the numerical integration procedure for the time or time-like co-ordinate direction. 

Consequently the main purpose of this paper is to  interpret the Dorodnitsyn boundary 
layer formulation in a finite element context. The result is an algorithm that is both highly 
accurate and economical. 

The alternative Dorodnitsyn formulations, traditional MIR, orthonormal (spectral) MIR 
and the Dorodnitsyn finite element method, are described in Section 2-with reference to 
the two-dimensional, laminar incompressible boundary layer equations. 

The convergence properties of the Dorodnitsyn finite element formulation are examined in 
Section 3 for linear and quadratic shape functions in u. The Falkner-Skan class of similar 
solutions can be computed very accurately. These solutions have been used to test the 
convergence of T (equation (25)) in the L2 norm. The convergence rates for both varying Au 
and Ax have been considered. The convergence behaviour in the 'engineering' norms, skin 
friction, displacement and momentum thickness, has also been established. 

The computational efficiency of the Dorodnitsyn finite element formulation is compared 
with that of a conventional finite difference formulation in Section 4 for the Falkner-Skan 
problems. By computational efficiency we will understand the accuracy achieved for a given 
execution (CPU) time. 

The Dorodnitsyn finite element method is compared with a finite difference method and 
the Dorodnitsyn spectral method, for the boundary layer flow over a circular cylinder, in 
Section 5. This problem is a good test of the method since it combines a region of favourable 
pressure gradient with a region of adverse pressure gradient terminating in the separation of 
the boundary layer. 

The extension of the Dorodnitsyn finite element method to solve turbulent boundary layer 
problems and a comparison with the Dorodnitsyn spectral formulation and a representative 
finite difference method STAN5, is described by Fletcher and Fleet.'' 
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2. ALTERNATIVE DORODNITSYN FORMULATIONS 

To clarify the description of the method we will restrict our attention to the two-dimensional, 
incompressible laminar boundary layer equations, 

u, + v, = 0 (3)  

and 
1 

R e  
uu, + V u y  = UeUer +- Uy, 

Initial conditions are provided at x = x, by 

~(x,, Y ) = Y ( Y )  and ~ ( x , ,  y>=vi(y) 

with y (y), q (y)  known. Boundary conditions are 

u(x, 0) = v(x, 0) = 0 and u(x, m)=ue(x) 

(4) 

u,(x) in equations (4) and (5 )  is the known velocity distribution at the outer edge of the 
boundary layer. In equations (3)-(5) u,v and u, have been non-dimensionalized with respect 
to a reference velocity, u,, and x and y with respect to  a reference length, L. The Reynolds 
number, Re, is given by 

Re  = U J I V  
where v is the kinematic viscosity. 

In this section the traditional Dorodnitsyn formulation of equations (3)-(5) will be 
described first. Improvements to  this method that generate a spectral (orthonormal) formula- 
tion and a finite element formulation will be described subsequently. 

2.1. Traditional Dorodnitsyn formulation 

Dorodnitsyn6 applied the method of integral relations (MIR) to the boundary layer 
equations, (3)-(5), in a particularly novel manner. Previous applications of MIR had been 
restricted to inviscid (and usually compressible) flow. The development of MIR is described 
comprehensively by H ~ l t . ~  

The traditional Dorodnitsyn boundary layer formulation can be introduced as follows. Let 

5 = jx u,(x’) dx’, q = Rel/’u,y 
0 

u‘ = u/ue, v’ = Re’/2v/u, and w = v’+ qu’ue5/ue 

Equations (3)  and (4) become 

u’,+w,=O 

with boundary conditions, 

u ’ = w = o  at q = O ,  u ’ = l  at q = m  
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A general weight function, f(u’), is introduced and the following product formed 

f x equation (6)  + fuc X equation (7) = 0 

The result is (dropping the superscript ’ from u’) 

Ue 

Equation (9) is integrated with respect to  q to give 

If there is no surface injection in the problem (w = 0 at q = 0) and f(u) is chosen to vanish 

If we define T = l/@ = u,, and change the variable of integration in equation (10) from q to  
at 77 = m  then w and u’ do not appear explicitly in the formulation. 

u, the result is 

Equation (11) is the Dorodnitsyn boundary layer formulation. The dependent variables are 0 
and T and the independent variables are 6 and u. 

The Dorodnitsyn formulation offers a number of significant advantages for boundary layer 
computation. Firstly an infinite domain in the y direction is replaced by a finite domain in the 
u direction. A uniform grid in u automatically captures downstream boundary layer growth 
and provides high resolution (in physical space) close to the wall. For typical velocity 
distributions across the boundary layer, this aspect is illustrated in Figure 1. The high 
resolution near the wall is even more important for turbulent boundary layers.” 

Since w and u do not appear explicitly in equation (11) only one equation need be solved. 
The normal velocity, v, can be recovered subsequently if required. Since, in the Dorodnitsyn 
formulation, T( =du/aq) is solved for directly, the calculation of skin friction is particuzarly 
accurate. 

For the traditional Dorodnitsyn formulation the u dependence of 0 and T is approximated 
as follows 

-1 
1 

@=- (bo+ b,u+ b2u2. . . b,,_l~N-l) 
(1-u)  

and 

T = ( ~ - ~ ) ( C ~ + C ~ U + C Z U ~ .  . . C , - , U ~ - ~ ) .  (13) 

The factor (1 - u) appearing in equations (12) and (13) is introduced to  satisfy the boundary 
condition T =  0 at u = 1. The coefficients, b k ( 6 )  and c k ( ( ) ,  are obtained by integrating 
numerically, in the 6 direction, the system of equations that are obtained by evaluating 
equation (11) with 

fk (u) = (l- ulk (14) 
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Figure 1. Grid comparison in y and u space 

The traditional Dorodnitsyn formulation has proved to be very efficient when relatively few 
terms are used in equations (12) and (13), e.g. N = 2  to 4. The method has been applied to 
two and three dimensional, incompressible and compressible, laminar and turbulent bound- 
ary layer 

2.2. Dorodnitsyn spectral formulation 

For large values of k in equation (14) the difference between fk and fkil becomes very 
small. Consequently the evaluation of equation (1 1) produces ordinary differential equations 
that are almost linearly dependent. As a result the system of ordinary differential equations 
becomes progressively more ill-conditioned as N, in equations (12) and (13), is increased. 

The Dorodnitsyn spectral formulation overcomes this problem by replacing the analytic 
functions u k  in equations (12) and (13) and the weight functions, fk(u), by related orthonor- 
mal  functions, gk(U), where 

The coefficients & are evaluated using the Gram-Schmidt orthonormalization process” so 
that 
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The appropriate form for w(u) will be indicated below. The trial solution, equation (12), is 
replaced by 

The non-orthogonal leading term, bo, is retained so that 0 behaves correctly at the outer 
edge of the boundary layer. 

Substituting equation (17) into equation (11) and replacing f with g gives 

where 

and k =  1, .  . . , N. 

simplifies significantly. Then equation (18) can be written 
A comparison of equations (16) and (18) indicates that if w(u) = u/(l-  u),  equation (18) 

and 

Using equation (20), equation (19) can be rewritten 

In equations (19)-(21), 

Clearly the coefficients vk can be evaluated once and for all. 

step, variable order Gear method.13 

ble14 laminar flows and to turbulent incompressible fl0ws."2'~ 

The system of equations (20) and (21) are integrated very effectively using the variable 

The spectral Dorodnitsyn formulation has been applied to incompressible9 and compressi- 

2.3. Dorodnitsyn finite element formulation 

equation (11) in an alternative form. 
To facilitate the application of the finite element method it is convenient to consider 
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Trial solutions for 0 and T are introduced in the following way 
M 

@ =  c N,(u)/( l -U)qx)  
i = l  

and 
M 

T =  C (1-u)Nj.(u)7i(x) 
i = l  

In equations (24) and (25) 8. are one-dimensional shape functions, either linear or 
quadratic. The additional factor (1 - u )  is introduced to ensure the correct behaviour of 0 
and T at the outer edge of the boundary layer. 

The simultaneous imposition of the particular analytic variation with u within each 
element on 0 and T prevents the relationship, @ =  1/T, being satisfied except at the 
nodes, i.e. 0, = l/ri ; or in the limit M -+ a. 

The weight function f k ( u )  is chosen to be 

fk(u) = ( l -  u)Nk(u) (26) 

The factor (1 - u )  in equation (26) is introduced to satisfy the requirement that fk(1) = 0. This 
ensures that 2) (or w) does not appear in equation (23). 

The substitution of equations (24), (25) and (26) into equation (23) generates a modified 
Galerkin finite element formulation.* Evaluation of the various terms produces the following 
system of ordinary differential equations for 0, and T ~ :  

where 

and 

The combination of using nodal values, 6, and T ~ ,  as unknown and shape functions, Nk, of 
small support permits an efficient implicit algorithm to be constructed to march the solution 
in the x direction. 

The marching algorithm can be established in the following way. Equation (27) is 
approximated by 

where 



406 C. A. J. FLETCHER AND R. W. FLEET 

and 
AO;+' = Oy+' - 0; 

the superscript n denotes a particular x location. The parameter o in equation (28) controls 
the degree of implicitness. For the results provided in this paper a value w = 0-5 has been 
used. 

In order to construct a linear system of equations for A6Yt1, Sn+' is linearized about the 
nth level following the approach of Briley and McDonald,l6 

Equation (29) is approximated by 

Substitution into equation (28) and rearrangement generates the following system of 
equations 

where 

and 

Equations (31) are tridiagonal for linear elements and pentadiagonal for quadratic 
elements. Equations (31) are solved at each xn step using a generalized Thomas algorithm. 
The generalized Thomas algorithm is able to take advantage of the profile of CCC when 
quadratic elements are used. That is, every other row of CCC is tridiagonal corresponding to  
a midside node at which the equation is generated. Consequently the execution time is not 
very much greater for quadratic than for linear elements (see Section 4). 

It has been found to be more efficient to solve equations (31) without iteration and, if 
necessary, to restrict the step-size, Ax, than to  iterate at each xn location. A variable 
step-size, Ax, has been used. The criterion for changing the step-size is as follows. For the 
node at the wall, the change in the solution, AOZ+'/OG, is computed. If AOZ+'/OG > y the 
step-size is halved, if this is not less than the minimum step-size. If A @ ~ + l / O ~ > O - l y  the 
step-size is increased by 50 per cent if this is not greater than the maximum*step-size. 

The original Dorodnitsyn formulation (Section 2.1) imposes the boundary condition T = 0 
at u = 1 but imposes no boundary condition at u = 0. However a boundary condition for T 
can be obtained from equation (2). This is 

T: = - ~ u , , / u :  (32) 
To impose this boundary condition it is convenient to make use of the group finite element 
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f o m ~ l a t i o n ~ ~  for T2. Thus the following trial solution is introduced, 

T~ = C N,T; 
i 

(33) 

where Ti = (1 - %)T~. Using equations (32) and (33), A@;+’ can be eliminated from equation 
(31) and @:+’, T T + ~  obtained subsequently. 

However, numerical experiments indicated that the accuracy of the solution (7, C,, 6 etc.) 
was generally inferior to that when equation (32) was not imposed (Figure 3). A similar 
reduction in accuracy was experienced when equation (32) was used with the Dorodnitsyn 
spectral formulation. For the results presented in the rest of this paper equation (32) has not 
been used, unless otherwise stated. 

3. CONVERGENCE PROPERTIES 

In this section we examine the convergence properties of the Dorodnitsyn finite element 
formulation. Most of the results will be obtained for the error in T in the L2 norm, i.e. 

Additionally the convergence of the engineering parameters, skin friction, cf, and displace- 
ment thickness, 6, is considered. 

For the Falkner-Skan family of problems, the solution, T,,, can be computed aribtrarily 
accurately following the procedure given by Cebeci and Bradshaw.2 The Falkner-Skan family 
of problems is characterized by different values of p corresponding to different outer velocity 
distributions of the form 

(35) u, = xP1(2-P) 

Three cases have been considered, with values p = 0, 0-5 and -0.15. these cases corres- 
pond to a flat plate (zero pressure gradient), favourable pressure gradient and an unfavoura- 
ble pressure gradient, respectively. Because of the particular choice of u, in equation (39 ,  
equations (3) and (4) can be reduced to an ordinary differential equation 

F W  + FF, + p[1- (Fy)2] = 0 (36) 
where 

Y = ~7((2--p)u,x)~’~ and Fy = u 

Appropriate boundary conditions are F, Fy =O at y = 0 and Fy = 1 at y = 00. Solutions to 
equation (36), using a fourth-order Runge-Kutta scheme with AY=0.02, have been ob- 
tained and used as the ‘exact’ solutions in the convergence results presented in Figures 2-9. 

The variation of the L2 error in T with the mesh size, Au, have been computed for linear 
and quadratic elements by integrating from 1 S x/L < 9 with the step-size, Ax, sufficiently 
small that all errors are due to the discretization in u. The convergence results shown in 
Figures 2 to 5 were obtained at x/L = 6.0. However a qualitatively similar variation with Au, 
and Ax, is obtained at all values of xlL. 

For the zero pressure gradient case, p = 0, the velocity distribution at the outer edge of the 
boundary layer has no effect. The error in T in the L2 norm, equation (34), with various Au 
is shown in Figure 2. Also shown in Figure 2 are lines corresponding to convergence like 
(Au)’ and (Au)~. 
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Figure 2. Variation of the L2 error in T with Aw; 0 = 0 

For linear elliptic problems, and linear parabolic problems with smooth initial conditions, 
theoretical estimates of the convergence rate for finite element formulations are available. ** 
The theoretical results indicate that using linear elements produces second-order, (Au)’, 
convergence in the L, norm and using quadratic elements produces third-order convergence. 

An examination of Figure 2 indicates that the use of linear elements achieves the 
theoretically expected second-order convergence. However the use of quadratic elements is 
only nominally second-order, if the result on the finest grid is ignored. However at levels of 
accuracy of practical interest, say Au = 0.1, the use of quadratic elements is significantly more 
accurate than the use of linear elements. 

That the theoretically expected convergence rates are not achieved for quadratic elements 
is not completely unexpected. The present problem is highly non-linear and the simultaneous 
prescipition of 0 and T and the use of special trial functions is a significantly more complex 
situation than that for which the theoretical results were established. 

Convergence properties for p = 0-5 are shown in Figure 3 .  p = 0.5 corresponds to a 
favourable pressure gradient. It is clear that the theoretical convergence rates are not 
achieved for either linear or quadratic elements. However this appears to be due, in part, to 
the relatively high accuracy that is achieved on a coarse grid. 

Included in Figure 3 are convergence results with the wall boundary condition, equation 
(32) ,  imposed. It is apparent that the convergence rate is lower than when the wall boundary 
condition is not enforced. Except for the coarsest grid the accuracy is always lower when the 
wall boundary condition is imposed. 

An unfavourable pressure gradient, i.e. a flow condition that is retarding the flow, is 
provided by the case, /3 = -0.15. Convergence results for this case are shown in Figure 4. 
Both linear and quadratic elements demonstrate second-order convergence except for 
quadratic elements on the finest grid. 

For all three pressure gradient cases ( P  = 0, 0-5  and -0.15) quadratic elements are more 
accurate than linear elements except for p = 0 and -0.15 on the finest grid considered. 

For linear problems the numerical integration scheme, equation (28), is second-order in Ax 
if w = 0.5. However for the present non-linear problem the convergence is of lower order 
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Figure 3. Variation of the L, error in T with Au; p = 0.5 

(Figure 5) .  These results were obtained with linear finite elements and Au = 0.025. Conse- 
quently the errors in the solution are due to the x discretization when Ax is large and due to 
thc u discretization when Ax is small. Thus for Ax small the error does not reduce with 
further reductions in Ax. 

From a practical point of view the convergence of the skin friction, q, and the displace- 
ment thickness, S/L, are of interest. The skin friction is a local property and related to the 
solution, T by 

BETA - 0 . 1 5  f 1 
X = QUADRATIC F - E -  

0 LINEAR F.E. 

. 
I 

0' 
1 ?I:, N 

0.60 0.80 1.00 1.20 1.40 1.60 
-LOG ( 1  0 )  DU 

Figure 4. Variation of the L, error in T with Au; = -0.15 

O 
X 
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Figure 5. Variation of the L, error in T with Ax; p = 0.5 

The displacement thickness measures the reduction in mass flow, compared with the flow 
outside the boundary layer. It is defined by 

Like the L2 error in T it is an integral property. 
Figure 6 shows the variation of the rms error in (Cf/Cfex- 1) and (S/S,,- 1) with Ax. The 

rms error has been computed over 16xlL values in the range 1 S x / L  S 9. This avoids the 
problem of picking a particular x / L  at which, fortuitously, C, = C,,, or S = Sex. 

BETA = 0.50. LI N E A R  F.E. 

X = D I S P .  THICK.  

Figure 6 .  with Au;  p =0.5 
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The results indicate a convergence for the skin friction that is almost second-order. The 
convergence for the displacement thickness is more uneven. However the results indicate 
that accuracies of the order of 0.1 per cent are obtained on a uniform grid of eleven points 
spanning the boundary layer. 

The results for the convergence of skin friction and displacement thickness show the same 
trend that was apparent for T. That is, although high rates of convergence are not indicated, 
the accuracy with a relatively coarse grid is very high. 

4. COMPUTATIONAL EFFICIENCY 

The results shown in Figures 2-6 indicate that solutions of high accuracy can be obtained for 
all the pressure gradient cases on a relatively coarse grid of 11 points. Consequently the 
computational efficiency has been assessed by obtaining solutions with this distribution of 
grid points across the boundary layer but with a coarser mesh in the downstream, x, 
direction. 

The results presented in this section have used a value of the step-size control parameter, 
y = 0.10. In practice the step-size, Ax, increases in the downstream direction more rapidly if 
y is larger. 

Typical solutions obtained with the Dorodnitsyn finite element formulation are compared 
with solutions obtained with the Dorodnitsyn spectral formulation and with a three-point 
finite difference scheme applied to equations (3) and (4). 

The finite difference scheme is obtained in the following way. Equation (4) is written 

U) A u ~ + ' = A x ( w S " + ~ + ( ~ - O ) S " )  (39) 

(40) 

i.e. in the same form as equation (28). In equation (39) S is given by 

S = u,u,, + (L+~ - 2y + uj+JIRe A2y - (%+1 - uj-,)vj/2 Ay 

Linearizing Sn+l about the nth x level with vj frozen produces an equation like (31), i.e. 

where 

cCckk-l=-k)($+A), C C C k k  =u;+2$A 

C C c k k + l =  o($ - h),  $ = V )  8x12 A)), = AxIRe A2y 

and 

P k  = A X  [W(U,U,,)ncl+(l-O)(UeUe,)"]+ h[uy-t,-2~','+ Uy+J-$[Uy+1-Uy-J 

The system of equations, (41), is solved in the same manner as equations (31). However at 
each X" step it is necessary to obtain uyC' from the discretized form of equation (3), i.e. 

We expect solutions of equations (41) and (42) to be of order (A2y, Ax) i.e. comparable to 
the use of linear elements in equation (31). 

A summary of the results obtained with a quadratic finite element formulation and the 
implicit finite difference formulation are shown in Table I. The algorithms used to integrate 
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Table I. Execution time comparison of the finite element and finite difference methods 

Favourable Unfavourable 
Zero pressure pressure gradients pressure gradient 

gradient, p = 0  p = 0.5 p = -0.15 

Finite Finite Finite Finite Finite Finite 
element difference element difference element difference 

Gridpoints across 
boundary layer 11 41 11 41 11 41 

Number of steps, 
AxlL 95 94 123 109 88 125 

AxJL 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 
0.256 0.256 0.171 0.076 0.256 0.171 

Relative execution 
time 1.00 5.00 1.32 3.89 1.00 5.26 

the equations downstream are similar and require approximately the same number of steps 
and cover the same range of step-sizes. In fact both methods use the same algorithm for 
changing the step-size. However the finite element formulation is typically 3 to 5 times more 
economical. This economy follows from the fewer grid points across the boundary layer 
required by the Dorodnitsyn finite element formulation. 

However to compare the computational efficiency of the finite element and finite differ- 
ence methods it is also necessary to compare the accuracy of the two methods. This has been 
done for /3 = 0, 0.5 and -0.15 in Figures 7-9, respectively. The basis of the comparision to 
consider the skin friction and displacement thickness variation over the range 1.0 =z x/L G 
9.0. The exact variation of the skin friction and displacement thickness for the zero pressure 
gradient case is shown in Figure 7(a); only sufficient points have been shown to indicate the 
variation with x. 

The percentage errors in the skin friction and displacement thickness are shown in Figures 
7(b) and 7(c), respectively. Also shown in Figures 7(b) and 7(c) are solutions obtained with 
the Dorodnitsyn spectral method (Section 2.2) with four unknown coefficients in equation 
(17). It is clear that all three methods are producing solutions of comparable accuracy. For 
this case uex, in equation (4), is zero. 

The exact solutions for the favourable pressure gradient case is shown in Figure (8a). The 
corresponding errors shown in Figures (8b) and (8c) indicate that all three methods are 
achieving a high accuracy. However the spectral method demonstrates a large initial 
perturbation away from the exact solution. This effect is apparent in other spectral  result^'^ 
and appears to be related to an incompatibility of the spectral method with the form of the 
initial data. 

For an unfavourable pressure gradient, p = -0.15, the skin friction is small for all values 
of x/L and the displacement thickness grows rapidly with x/L (Figure 9(a)). The errors in 
skin friction for the various methods are shown in Figure 9(b). It is clear that all methods are 
of comparable accuracy. Although the percentage errors are considerably larger than for 
p = 0.5 (Figure 8(b)) the absolute errors are of comparable magnitude. The percentage 
errors in the displacement thickness (Figure 9(c)) are also of a comparable magnitude to 
those for p =0.5. 

If the accuracies shown in Figures 7 to 9 are considered along with the relative execution 
times shown in Table I then it is clear that the Dorodnitsyn finite element formulation is 



LAMINAR BOUNDARY LAYER FLOW 413 

r BETA = 0.00 1 

0 

DISP. THICK. 

- 'j 1: SKIN FRICTION. CF 

, BETA = 0.00 

8 SPECTRAL METHOD 

x F.D. METHOD 

m F.E. METHOD 

"1 P 

9 1  P 1.00 5.00 5 .00  7.00 9.00 

X/L 
(b) 

BETA = 0 . 0 0  

SPECTRAL METHOD 

x F.D. METHOD 

0 m F.E. METHOD 
A -  

0 

I I , ,  I 
c 

It.00 5.00 5.00 7.00 9.00 
X/L 
(4 

Figure 7. Comparison of the Dorodnitsyn finite element, Dorodnitsyn spectral and a finite difference method for 
zero pressure gradient, B =0:  (a) exact solution; (b) percentage error in skin friction; (c) percentage error in 

displacement thickness 



414 

y e -  
0 0  
0 

X 
- 0  

c -  

C. A. J. FLETCHER AND R. W. FLEET 

0 SPECTRAL METHOD Q SPECTRAL METHOD 

x F.D. METHOD 

CI F.E.  METHOD CI F . E .  METHOD 

0 Y) 

d l  

L L -  
0 s- 

I 
- 0  

- 
0 Y) 

BETA = 0.50 

8 = SKIN FRICTION, CF 

THICK. 

x x x  x x x  x x 

gll 0 

1.00 3.00 5.00 1 .00  0 .  
X/L 
i a) 

BETA = 0 .50 0 P1 

0 
9 * 

0 
9 

j0 

BETA = 0.50 

Figure 8. Comparison of the Dorodnitsyn finite element., Dorodnitsyn spectral and a finite difference method for a 
favourable pressure gradient, p = 0.50: (a) exact solution; (b) percentage error in skin friction; (c) percentage error 

in displacement thickness 



LAMINAR BOUNDARY LAYER FLOW 415 

BETA = -0.15 

x 3 DISP. T H I C K .  

8 = S K I N  F R I C T I O N .  CF 

BETA -0.15 

0 SPECTRAL METHOD 

x F . D .  METHOD 

6 F.E.  METHOD '1 

0 

ql: 0 1.00  3.00 5.00 7.00 9.00 

X/L 
(b) 

BETA = - 0 . 1 5  

* SPECTRAL METHOD 

x F . D .  METHOD 

0 0 F . E .  METHOD 
- -  
0 

- 1  
$ 1  I I 1 I I 1 I 1  
1.00 3.00 5.00 T-00 9.00 

X/L 
(C) 
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displacement thickness 
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computationally more eficient than the implicit finite difference formulation for the boundary 
layer equations. Even more substantial increases in computational efficiency have been found 
when the Dorodnitsyn finite element formulation is applied to turbulent boundary layers." 
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5 .  FLOW OVER A CIRCULAR CYLINDER 

This application is included because it features an initially favourable pressure gradient (up 
to 4 = 90") and an unfavourable pressure gradient beyond 4 = 90". Eventually separation 
occurs. The ability of a boundary layer method to predict separation is an important 
property. 

At separation the shear stress at the surface becomes zero. In the present formulation this 
corresponds to rW = 0. However this also corresponds to 8, = a. The form of equation (31) is 
not suitable close to separation since it generates large values for A& etc. 

However, it is straightforward to formulate the equivalent equation that gives AT, the 
correction to T, in place of equation (31). That is, equation (27) can be written 

Since T ,  will reach zero before any other value of 7, it is convenient to multiply by 
linear elements). Then equation (39) becomes 

(for 

Equation (40) is valid, and works effectively, right up to separation. Beyond separation the 
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boundary layer equation as given above, equation (ll), is not valid. However if the interval 
0 < u < 1 is replaced by two intervals, umin < u < 0 and urnin < u < 1, a unique relationship 
between u and y can still be obtained. This approach has been developed for the traditional 
method of integral  relation^,^ but is not pursued here. 

A typical surface shear stress distribution with 4 is shown in Figure 10. The finite element 
results were obtained with quadratic elements, Au = 0.10 and O . O O l = z A +  S0.064. These 
results are compared with those obtained with a four-term spectral method and the finite 
difference method described previously. The finite difference scheme used 41 points across 
the boundary layer. A similarity stagnation point solution, p = 1.0 in equation ( 3 9 ,  is used 
as starting data for all the methods. It can be seen that all methods are in close agreement 
except near to separation. 

The corresponding variation of displacement thickness is shown in Figure 11. As with the 
surface shear stress results, agreement is better in the favourable pressure gradient region 
than in the region close to separation. Velocity distributions for angles 4 = 40" and 80" are 
shown in Figure 12. Agreement between the methods is better at 40" than at 80". 

For this problem the Dorodnitsyn finite element formulation predicts a separation point of 
+=106.1". This compares with a value of 105" due to Cebeci and Bradshaw.' The 
Dorodnitsyn spectral method used the equivalent of equation (27). Close to separation the 
variable-step algorithm generated smaller and smaller steps, A+, presumably due to the 
growth in 8,. Consequently it was necessary to curtail this integration prior to separation. 
The finite difference scheme predicted separation at + = 106.9". 
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Figure 11. Variatiorr in displacement thickness for flow over a circular cylinder 
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Figure 12. Typical boundary layer velocity profiles for flow over a circular cylinder 

6. CONCLUSIONS 

The Dorodnitsyn boundary layer formulation provides a high resolution across the boundary 
layer, avoids the explicit appearance of the normal velocity, 21, and obtains solutions for the 
skin friction directly. 

We have shown that the Dorodnitsyn formulation can be given a finite element interpreta- 
tion by an appropriate choice of test and trial functions. When combined with an implicit, 
non-iterative marching scheme in the downstream direction an algorithm is obtained that is 
both highly accurate and economical. 

The algorithm has been tested on the Falkner-Skan family of laminar boundary layer 
problems. The algorithm is of order (A2u, Ax) whether linear or quadratic elements are used, 
but produces solutions of high accuracy on coarse grids. 

The use of quadratic elements (in u)  produces solutions of comparable accuracy to a 
three-point finite difference scheme but with only one fifth of the execution time. 

With a small modification the Dorodnitsyn finite element formulation is able to give 
accurate solutions right up to separation. 
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